Identification of plant stress-responsive determinants in Arabidopsis by large-scale forward genetic screens.

نویسندگان

  • Hisashi Koiwa
  • Ray A Bressan
  • Paul M Hasegawa
چکیده

All plants sense and adapt to adverse environmental conditions, however, crop plants exhibit less genetic diversity for abiotic stress tolerance than do wild relatives indicating that a genetic basis exists for stress adaptability. Model plant genetic systems and the plethora of molecular genetic resources that are currently available are greatly enhancing our ability to identify abiotic stress-responsive genetic determinants. Forward genetic screens of T-DNA mutagenized Arabidopsis thaliana populations in the genetic background of ecotypes C24(RD29a-LUC) and Col-0 gl1 sos3-1 were carried out to begin an exhaustive search for such determinants. The C24(RD29a-LUC) screens identified mutants with altered salt/osmotic stress sensitivity or mutants with altered expression of the salt/osmotic/cold/ABA-responsive RD29a gene. Also, mutations that alter the NaCl sensitivity of sos3-1 were screened for potential genetic suppressors or enhancers of salt-stress responses mediated by SOS3. In total, more than 250 000 independent insertion lines were screened and greater than 200 individual mutants that exhibited altered stress/ABA responses were recovered. Although several of these mutants have been reported, most have not yet been studied in detail. Notable examples include novel alleles of SOS1 and mutations to genes encoding the STT3a subunit of the oligosaccharyltransferase, syntaxin, RNA polymerase II CTD phosphatases, transcription factors, ABA biosynthetic enzyme, Na+ transporter HKT1, and SUMO E3 ligase. The stress-specific phenotypes of mutations to genes that are involved in many basic cellular functions provide indication of the wide range of control mechanisms in cellular homeostasis that are involved in stress adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification and Expression Analysis of Two Arabidopsis LRR-Protein Encoding Genes Responsive to Some Abiotic Stresses

AbstractTwo Arabidopsis thaliana genes, psr9.2 and psr9.4 appearedto be highly similar to a phosphate-starved induced gene,psr9, isolated from Brassica nigra suspension cells.Sequence analysis classified the encoded polypeptides asmembers of leucine-rich repeat (LRR) proteins superfamily.The sequence of psr9 proteins comprise a unique N-terminalregion e...

متن کامل

Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Drought stress in Lens culinaris L.

Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-s...

متن کامل

Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic Acid.

Drought stress is a common adverse environmental condition that seriously affects crop productivity worldwide. Due to the complexity of drought as a stress signal, deciphering drought tolerance mechanisms has remained a major challenge to plant biologists. To develop new approaches to study plant drought tolerance, we searched for phenotypes conferred by drought stress and identified the inhibi...

متن کامل

Functional identification of Arabidopsis stress regulatory genes using the controlled cDNA overexpression system.

Responses to environmental stresses in higher plants are controlled by a complex web of abscisic acid (ABA)-dependent and independent signaling pathways. To perform genetic screens for identification of novel Arabidopsis (Arabidopsis thaliana) loci involved in the control of abiotic stress responses, a complementary DNA (cDNA) expression library was created in a Gateway version of estradiol-ind...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 57 5  شماره 

صفحات  -

تاریخ انتشار 2006